Problem

Source: North Macedonian Mathematical Olympiad 1994 p3

Tags: Sum, algebra, inequalities, Product, max



a) Let $ x_1, x_2, ..., x_n $ ($ n> 2 $) be negative real numbers and $ x_1 + x_2 + ... + x_n = m. $ Determine the maximum value of the sum $ S = x_1x_2 + x_1x_3 + \dots + x_1x_n + x_2x_3 + x_2x_4 + \dots + x_2x_n + \dots + x_ {n-1} x_n. $ b) Let $ x_1, x_2, ..., x_n $ ($ n> 2 $) be nonnegative natural numbers and $ x_1 + x_2 + ... + x_n = m. $ Determine the maximum value of the sum $ S = x_1x_2 + x_1x_3 + \dots + x_1x_n + x_2x_3 + x_2x_4 + \dots + x_2x_n + \dots + x_ {n-1} x_n. $