Problem

Source: North Macedonian Mathematical Olympiad 1994 p2

Tags: ratio, geometry, lattice



Let $ ABC $ be a triangle whose vertices have integer coordinates and inside of which there is exactly one point $ O $ with integer coordinates. Let $ D $ be the intersection of the lines $ BC $ and $ AO. $ Find the largest possible value of $ \frac {\overline{AO}} {\overline{OD}} $.