If $a,b,c,d,e$ are real numbers, prove the inequality $a^2 +b^2 +c^2 +d^2+e^2 \ge a(b+c+d+e)$.
Problem
Source: Norwegian Mathematical Olympiad 1999 - Abel Competition p1b
Tags: inequalities, algebra
Source: Norwegian Mathematical Olympiad 1999 - Abel Competition p1b
Tags: inequalities, algebra
If $a,b,c,d,e$ are real numbers, prove the inequality $a^2 +b^2 +c^2 +d^2+e^2 \ge a(b+c+d+e)$.